USN

larks)

Inrks)

Marks)

Marks)

Marks)

Marks)

Marks)

Marks)

Marks)

Marks)

NEW SCHEME

Third Semester B.E. Degree Examination, July 2007 CS/IS/EE/EC/IT/TC/BM/ML

Logic Design

Time: 3 hrs.]

[Max. Marks:100

Note: Answer any FIVE full questions.

1 a. Using the theorems of Boolean algebra, simplify the following:

i)
$$y_1 = D(\overline{A} + B) + \overline{B}(C + AD)$$

$$\vec{n}$$
 $y_2 = \overline{AB + ABC + A(B + AB)}$

iii)
$$y_3 = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

(09 Marks)

L. Express the following expressions in canonical form:

$$\mathbf{D} \mathbf{v}_1 = (\mathbf{A} - \mathbf{B})(\mathbf{A} + \mathbf{C})(\mathbf{B} + \overline{\mathbf{C}})$$

$$y_2 = AC + AB + BC$$

(06 Marks)

Give the implementation of EXOR gate using minimum number of NAND gates only.

2 i) Express the following min term expression in POS form:

 $y(A, B, C, D) = \Sigma m(1, 3, 5, 6, 7, 9, 10, 12, 15)$

ii) Express the following max term expression in SOP form: $y(A, B, C) = \pi M(0, 3, 5, 6)$.

(06 Marks)

b. i) What are the advantage, disadvantages of K map?

ii) Simplify the following function in SOP form using K Map:

$$f(A,B,C,D) = \overline{ABC} + AD + B\overline{D} + C\overline{D} + A\overline{C}$$

(08 Marks)

Simplify the following function in POS form using K map:

$$f(A, B, C, D) = \pi M(0, 1, 2, 5, 8, 9, 10).$$

(03 Marks)

d. Simplify the following function in SOP form using K map:

$$y(w, x, y, z) = \Sigma m(1, 2, 3, 5, 9, 12, 14, 15) + \Sigma d(4, 8, 11).$$

(03 Marks)

3 a Minimize the expression using Quine Mc Cluskey method.

$$y(A, B, C, D) = \Sigma m(1, 2, 3, 5, 9, 12, 14, 15) + \Sigma d(4, 8, 11).$$

(10 Marks)

Simplify the following using VEM technique. Reduce 4 variables to 3 variables.

$$y = \overline{ABCD} + \overline{ABCD}$$

(05 Marks)

 Realize a full adder using minimum number of 2 input NAND gates. Write the truth table, relevant expressions and logic diagram. (05 Marks)

4 a. Define the following:

- i) Fan in and fan out
- ii) Noise margin

iii) Propagation delay. (06 Marks)

Explain the operation of basic TTL NAND gate circuit with relevant diagram.

(07 Marks)

Draw and explain the circuit of 2 input CMOS NOR gate.

(07 Marks) Contd.... 2

- a. What is a magnitude comparator? Design a 2 bit digital comparator by writing the truth table, the relevant expression, and logic diagram.
 - b. Implement the following Boolean function using 8:1 MUX: (06 Marks) $F(A, B, C, D) = \Sigma m(1, 2, 5, 9, 10, 14)$
 - Write the truth table of the following flip flops: (04 Marks) D, T, SR, JK.
- a. Write the excitation table of SR flip flop. Design a synchronous MOD-6 counter using SR flip flop for the following count sequence 0, 1, 3, 2, 6, 4 and repeat. Write the transition table, logic diagram.
 - b. What is a look-ahead carry adder? Explain the circuit and operation of a 4 bit binary adder with look-ahead carry.
- a. Realize a 3 bit binary synchronous up counter using JK flip flop. Write the excitation table, transition table and logic diagram. Include preset, clear option.
 - b. Explain the different types of shift register. SISO, SIPO, PIPO, PISO with relevant circuit diagram.
- a. A combinational circuit is defined by the functions: 8

$$F_1 = \Sigma m(3, 5, 7)$$

$$F_2 = \Sigma m(4, 5, 7)$$

Implement the circuit with a PLA having 3 inputs, 3 product terms and 2 outputs. $F_2 = \Sigma m(4, 5, 7)$

b. A sequential network has one input and one output. The state diagram is shown in fig.8(b). Design the sequential circuit with T flip flop.

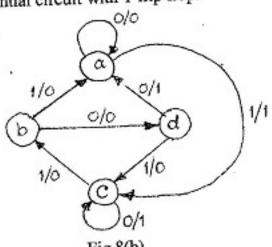


Fig.8(b)